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Abstract: Many studies have been carried out in this field and different models have been proposed with a view to 

better understanding of this disease. State transition models were monitored by serial measurements of CD4 cells 

per unit volume (     of blood in an HIV patient as a tool for modeling HIV disease progression. WHO disease 

staging system for HIV infection was used to analyze data. The methods used in this dissertation are applied to 

HIV data sourced from one health facility. HIV progression is analyzed through the application of a four state 

Markov model with reversible transitions such that  state 1: CD4 count   500, state 2: 350            499, 

state 3: 200            349, state 4: CD4 count   200. 
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1.   INTRODUCTION 

The staged Markov model is a useful way of describing a process in which an individual moves through a series of states 

in continuous time. Survival analysis is the simplest two-state model where individuals remain alive until an observed or 

censored time of death. Staged models based on Markov processes are a well-established method of estimating rates of 

transition between stages of disease. Staged models are a sub-discipline of survival analysis. They are the most common 

models for describing longitudinal failure time data. Staged models are models with definitive states that an individual in 

a study may visit. The most convenient model in staged models is a Markov model. Research has reported the application 

and usefulness of Markov chains in a wide range of topics such as medicine, game theory, internet applications, social 

sciences, and statistics among others. One may examine the occurrence of clinical events which occur early in HIV 

infection or the values of biological markers as markers of disease progression. The most widely used marker of HIV 

progression is the CD4 lymphocyte count, which plays a crucial role in the immune system and is used to determine when 

ART should commence. When an individual loses CD4 cells he or she is more vulnerable to opportunistic infections. In 

this project, a model with state structure based on intervals of CD4 count and death as an absorbing state was used. 

2.   STATEMENT OF THE PROBLEM 

Longini et al (1989) modeled stages of HIV infection with irreversible progression. This model examined the mean 

sojourn times in each of the states and the length of the AIDS incubation period but did not take into account the effect of 

cofactors on rates of HIV progression. Tarylee (2011) applied multistate Markov model to HIV progression using CD4 

count intervals with ARV initiation as an absorbing state. This study has analyzed HIV progression using CD4 counts 

intervals of six months since enrolment on ART with the objective of investigating the probabilities of transitions to lower 

CD4 counts and estimating the average stay in the CD4 count states. Previous researchers in Kenya have mainly applied 

Markov processes to manpower systems.  Because of this a study of the survival of HIV positive patients in Kenya is 

needed to understand the disease progression.  
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3.   LITERATURE REVIEW 

The desirability of a descriptive tool for censored survival data, free of parametric assumptions, had been recognized for 

decades. During the 1950s, well established demographic and actuarial techniques were presented to the medical-

statistical community in influential surveys such as those by Berkson and Gage (1952). In this approach, time was 

grouped into discrete units for example one year intervals and the chain of survival frequencies from one interval to the 

next were multiplied together to form an estimate of the survival probability across several time periods. The difficulty 

was in the development of the necessary approximations due to the discrete grouping of the intrinsically continuous time 

and somewhat oblique observation fields in cohort studies and more complicated demographic situations. The penetrating 

study of Kaplan and Meier (1958), the fascinating genesis of which was chronicled by Breslow et al (1991), eliminated in 

principle the need for these approximations in the common situations in medical statistics where all survival and 

censoring times are known precisely. Actuaries and demographers have used parametric survival models for decades but 

these have never dominated the medical uses of survival analysis. However, in early period, important contributions to the 

statistical theory of survival analysis were based on simple parametric methods.  

Cox (1972) revolutionized survival analysis by his semi-parametric regression model for the hazard, depending arbitrarily 

non-parametrically on time and parametrically on covariates. The homogenous Markov staged models are time-

continuous models for which the transition probability only depends upon the current state and has constant transition 

hazards for the state. In medical research, discrete observation times are generally used. The state that the patient is in at 

the observation is the only thing known. The researcher may know that there has been a transition to a new state but does 

not know when in that interval or time it occurred. Thus we consider homogeneous Markov models with interval 

censoring. The Markov model is a type of stochastic process and has long played a role in bio statistical modeling. A 

more recent example of major importance is the Armitage-Doll model for the development of cancer (i.e. carcinogenesis), 

which appeared in 1954 (Armitage-Doll, 1954). The so-called multistage model is a Markov chain which described how a 

cell moved through a number of different stages before becoming cancerous. The model has been a considerable 

inspiration for understanding the development of cancer. We consider a population of individuals, each having a failure 

time T, where T   is a random variable of interest. A vital function of T referred to as the survivor function is given by; 

nS (t) = P(T       Pr (T ⩽ t) = 1- F (t)where F (t) is the cumulative distribution function of the random variable 

T.The lifetime distribution function, conventionally denoted by F, is defined as the complement of the survival function,F 

(t) = Pr (T ⩽ t) = 1-S (t)and the derivative of “F”, which is the density function of the lifetime distribution, is 

conventionally denoted f, 

 f (t) = F´(t) = 
 

  
 (   

The function f is sometimes called the event density; it is the rate of death or failure events per unit time.The survival 

function is often defined in terms of distribution and density functions 

 S (t) = Pr (T t) = ∫  (        (  
 

 
     

Thus the survival function gives us the probability that the individual does not fail (i.e. survives) within the time interval 

(0, t). Similarly, a survival event density function can be defined as 

 s (t)  = S´(t) = 
 

  
 (    

 

  
∫  (      

 

  

 

 
[   (  ]      (     

4.   RESEARCH METHODOLOGY 

For a continuous time stochastic process {X (t), t ≥0} whose state space is S, we say it has the Markov property if 

               P(X(t) = j| X(s) = i, X(    ) =     , ...,X(  ) =   ) = P(X(t) = j|X(s) = i)  where  

0      ...       s   t is any nondecreasing sequence of n + 1 state occupation times and    . . . ,     , i, j   S. 

In other words the state of the process at time t depends only on the most recent state occupied prior to time t.A 

continuous time stochastic process {X (t), t   0} is called a continuous time Markov process (hereafter CTMC) if it has 

the Markov property. 

A CTMC is said to be time homogeneous if for any s  t and any states i, j  S 

P(X (t) = j| X(s) = i) = P(X (t − s) = j| X (0) = i)       
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That is, dependence on time is only through the length of time elapsed between events. The time homogeneous property 

means that whenever state i is entered, the way the process evolves is equivalent to having started in state iat time 0.When 

the process enters state i, the time it spends there before moving to another state is called the holding time in state i or the 

sojourn time. The sojourn time is of great interest in disease modeling as it gives us an indication of how rapidly the 

disease is progressing. Longer sojourn times in a disease state mean a slow progressing disease and shorter sojourn times 

mean a rapidly progressing disease. With the assumption of time homogeneity, it should be evident that the sojourn time 

in state i would be the same every time state i is entered. Hence we can speak of a holding time or sojourn time 

distribution. For a time homogeneous continuous time Markov chain,   (the sojourn time in state i) is exponentially 

distributed. The theorem has been adapted from Random Processes, Statistic (2007) notes. The proof is based on the 

memoryless property which is unique for the exponential distribution. By time homogeneity we assume that the process 

starts in state i. Then, 

       P (      |       ( (                | (                

   =  ( (                | (               

   = ( (                | (       

   = ( (              | (       

   =P (      

This is the unique memoryless property for an exponentially distributed random variable, therefore    must be 

exponentially distributed with corresponding state i mean sojourn time given by    . This implies that Var(      
  is not 

independent of the mean. 

5.   FINDINGS 

The transition probability matrix ( )P t is evaluated below at times 1, 2, 3, 4, 5, 6, and 7 years. As time progressed the 

probability for transitions to the absorbing state increased and the probability of immune recovery decreases. 

 

 

0.3902 0.3182 0.2496 0.04196
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0 0 0 1

2P 

 
 
 
 
  

 

 

0.3492 0.3129 0.2655 0.07333

0.3247 0.3069 0.2699 0.09854

0.3019 0.2958 0.2665 0.1358
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0.3282 0.3037 0.2632 0.1049

0.3151 0.2959 0.2591 0.1299

0.2993 0.284 0.2505 0.1663

0 0 0 1

4P 

 
 
 
 
  

 

 

0.3146 0.2936 0.256 0.1358

0.3046 0.2855 0.2497 0.1601

0.2911 0.2737 0.2399 0.1953

0 0 0 1

5P 

 
 
 
 
  

 

 

0.303 0.2835 0.2477 0.1658

0.2942 0.2756 0.241 0.1892

0.2816 0.2641 0.231 0.2233

0 0 0 1

6P 

 
 
 
 
  

 

 

0.2923 0.2737 0.2392 0.1947

0.284 0.266 0.2326 0.2173

0.272 0.2549 0.229 0.2502

0 0 0 1

7P 

 
 
 
 
  

 

Interpretation of the transition probability matrix: 

A patient presenting at the health facility with a CD4 count greater than 500, has a 25% chance of having a CD4 count 

between 200 and 349 and 4% chance of being absorbed within 2 years. Seven years later, however this patient has a much 

higher probability of being absorbed (20%); A patient presenting at the health clinic with a CD4 count between 350 and 

499 has a 32% chance of experiencing immune recovery (an increase in CD4 count) within the first year. As time 

progresses, this chance of immune recovery decreases to 28% after seven years; Transition probabilities from states 1, 2, 3 

into state 4 (absorbing state) increases as time increases. For example 

   (1) = 0.03098 while    (7) = 0.2173 

   (1) = 0.06373 while    (7) = 0.2502 

A patient presenting with 200⩽ CD4 count<349 has a 25% chance of being absorbed within seven years. 

6.   CONCLUSION AND RECOMMENDATION 

Based on the findings of the study the following conclusions were made at 95% confidence limits:The study reveals that a 

patient presenting with 200⩽ CD4 count<349 has a 25% chance (0.1966, 0.4042) of being absorbed within seven years. 

This model reveals that CD4 cell count is a good indicator for gauging the strength of the immune system and for 
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determining whether a person is at risk of infection with certain organisms. The higher the CD4 count, the stronger the 

immune system. Nationally, investigative efforts are needed to ascertain why patients pin emotions and hopes to a single 

laboratory test of the CD4 cells count for proper monitoring. 
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